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Abstract- In this work, we handle the space-time fractional foam drainage equation and the space-time 
fractional Klein Gordon equation to solve analytically. Firstly, we use fractional traveling wave transformations 
to convert fractional nonlinear partial differential equations to nonlinear ordinary differential equations. Next, 
the modified Kudryashov method is applied to find exact solutions of these equations.  
 

Index Terms- - the space-time fractional foam drainage equation; space-time fractional Klein Gordon equation; 
the modified Kudryashov method . 

1. INTRODUCTION 

Fractional order differential equations, are the 
generalized type of the classical differential equations 
of integer order, plays an outstanding role from the 
viewpoint of applications in chemistry, physics and 
engineering. In the past centuries, the fractional 
derivatives and integrals were thought to be the 
subject of the theoretical mathematics. However, in 
the few decades, many studies have implied that the 
fractional phenomena is related with not only the pure 
mathematics, but also the applied sciences such as 
fluid mechanics, arterial mechanics, optical fibers, 
geochemistry, plasma physics and so on. Due to the 
neglect of the effects in classical integer order models, 
the advantage of the fractional derivatives become 
apparent in modelling mechanical and electrical 
properties of real materials. The fractional derivatives 
construct a basis to describe the features of systems of 
mathematical modelling and simulation of systems 
that leads to nonlinear fractional differential equations 
(FDEs) and to solve such equations [Podlubny 
(1999)]. In recent years, numerous effective methods 
for solving these system have been found in the most 
useful works on nonlinear FDEs. Such as, the sub-
equation method [2,5,6,14], the exp-function method 
[16], the first integral method [11,15], the complex 
transform  method [12] and so on. The common of 
these methods is based on the homogenous balance 
principle. In this study, firstly we will describe the 
modified Kudryashov method which is proposed by 
N. A. Kudryashov [10] and applied in many studies to 
construct the exact analytical solutions of nonlinear 
differential equations. This method is also based on 
the homogenous balance principle. Therefore, it can 
be applied to solve the fractional order nonlinear 
equations. Then, we will apply the proposed method 
to the space-time fractional foam drainage equation 
and the fractional Klein-Gordon equation by the help 
of Jumarie's modified Riemann- Liouville derivative. 

2. PRELIMINARIES AND THE MODIFIED 
KUDRYASHOV METHOD 

Jumarie's modified Riemann- Liouville derivative is 
defined as [7,8]: 
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In addition, some properties  for the proposed 
modified Riemann-Liouville derivative are given in 
[7,8] as follows:  

(1 )
, 0,

(1 )tD t tα γ γ αγ γ
γ α

−Γ += >
Γ + −

                (3) 

( ( ) ( )) ( ) ( ) ( ) ( ),t t tD f t g t g t D f t f t D g tα α α= +            (4) 
'[ ( )] [ ( )] ( ) [ ( )]( '( )) ,t g t gD f g t f g t D g t D f g t g tα α α α= =  (5) 

 
which are the direct consequence of  

( ) (1 ) ( )D x t Dx tα α= Γ + .                                   (6)  

We present the main steps of the modified 
Kudryashov method as follows [1,3,4,9,10]: 
For a given nonlinear FDEs for a function u of 
independent variables, X = (x, y, z, ..., t): 
 

( , , , , ,..., , , , ,...) 0t x y z t x y zF u u u u u D u D u D u D uα α α α =       (7) 
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where tD uα , xD uα , yD uα  and zD uα   are the modified 
Riemann-Liouville derivatives of u with respect to 
t, x, y and z. F is a polynomial in u = u(x,y, z,..., t) and 
its various partial derivatives, in which the  nonlinear 
terms and highest order derivatives are involved. 
Step 1: We investigate the traveling wave solutions of 
Eq.(7) of the form: 

( , , ,..., ) ( )u x y z t u η= , 

,
(1 ) (1 ) (1 ) (1 )

x y z tβ γ δ αω ε σ λη
β γ δ α

= + + + +
Γ + Γ + Γ + Γ +

L   (8) 

where ω ,ε ,σ  and λ  are arbitrary constants. Then 
Eq.(7) reduces to a nonlinear ordinary differential 
equation of the form: 

( , , , , ) 0.G u u u uη ηη ηηη =K                                           (9) 

Step 2: We suppose that the exact solutions of Eq.(9) 
can be obtained in the following form: 

0
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M
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where 
1

1
Q

eη=
±

 and the function Q is the solution of 

equation 2 .Q Q Qη = −  

Step 3: According to the method, we assume that the 
solution of Eq.(9) can be expressed in the form 

( ) .N
Nu a Qη = +L                                                   (11) 

Calculation of value N in formula (11) that is the pole 
order for the general solution of Eq.(9). 
In order to determine the value of N we balance the 
highest order nonlinear terms in Eq.(9) analogously as 
in the classical Kudryashov method. Supposing 

( )( ) ( )l su uη η  and ( )( ( ))p ru η are the highest order 
nonlinear terms of Eq.(9) and balancing the highest 
order nonlinear terms we have: 

.
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                                                           (12) 

Step 4:  Substituting Eq.(10) into Eq.(9) and equating 
the coeffcients of iQ  to zero, we get a system of 

algebraic equations. By solving this system, we obtain 
the exact solutions of Eq.(9). 

3. APPLICATIONS 

3.1.  The Space-Time Fractional Foam 
Drainage Equation 

We first apply the method to the space-time fractional 
foam drainage equation in the form: 

22
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where 0 , 1,α β< ≤  0x >  and  u is the function of  

(x, t). 

This equation describes the evolution of the vertical 
density profile of a foam under gravity. Their uses 
extended from packaging, car manufacturing to ore-
separation and brewing [Cox et al. (2002)]. By 
considering the traveling wave transformation: 
 

( , ) ( ),u x t u η=  

(1 ) (1 )
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                                   (14) 

where ω and λ are constants. Then Eq.(13) can be 
reduced to the following ordinary differential 
equation: 
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of the highest order with the highest order nonlinear 
term in Eq.(15), we compute 

1N = .              (17) 
Thus, we have 

0 1( ) ( )u a aη η= +                         (18) 

and taking the derivatives of ( )u η with respect to η , 
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Substituting Eq.(19) and Eq.(20) into Eq.(15) and 
collecting the coefficient of each power of iQ setting 

each of coefficient to zero, solving the resulting 
system of algebraic equations we obtain the following 
solutions: 
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Fig.1. The graph of 1( , )u x t for 0.5,α =  0.5β =  and 1ω = . 
 

        
 Fig.2. The graph of 1( , )u x t for 1,α =  0.5β =  and 1ω = . 
            

                

 Fig.3. The graph of 2( , )u x t for 1,α =  0.5β =  and 1ω = . 
 

3.2.  The Fractional Klein-Gordon Equation 

We, next consider the fractional Klein-Gordon 
equation defines as: 

2 2
3

2 2

u u
bu cu

t x

α

α
∂ ∂= + +
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                  (24) 

where 0t > , 0 1α< ≤  and u is the function of  (x, t). 
This equation   defines  a motion of pseudoscalar field 
whose quanta are spinless particles. This equation also 
describes the quantum amplitude for finding a point 
particle in various places. By considering the traveling 
wave transformation: 

( , ) ( ),u x t u η=  
(1 )

t
x

αλη ω
α

= −
Γ +

                      (25) 

where ω and λ are constants. Then Eq.(24) can be 
reduced to the following ordinary differential 
equation: 

2 2 3'' ''u u bu cuλ ω= + +                             (26) 
Also we take 

0 1( ) N
Nu a a Q a Qη = + + +L                              (27) 

where 
1

1
Q

eη=
±

. We note that the function Q is the 

solution of 2 .Q Q Qη = − Balancing the the linear term 

of the highest order with the highest order nonlinear 
term in Eq.(26), we compute 

1N = .              (28) 
Thus, we have 

0 1( ) ( )u a aη η= +                         (29) 

and taking the derivatives of ( )u η with respect to η , 

we obtain 
2

1 1u a Q a Qη = − ,               (30) 
3 2

1 1 12 3 .u a Q a Q a Qηη = − +                (31) 

Substituting Eq.(30) and Eq.(31) into Eq.(26) and 
collecting the coefficient of each power of iQ setting 

each of coefficient to zero, solving the resulting 
system of algebraic equations we obtain the following 
solutions: 
 

Case1: 0 ,
b

a
c

=  1 2 ,
b

a
c

= −  22 .bλ ω= − − +  (32) 

     

( )21
2

(1 )

1
( , ) 1 2 ,

1

b t
x

b
u x t

c

e

αω
ω

α

− +
+

Γ +

 
 
 = −
 
 + 

              (33) 

( )22
2

(1 )

1
( , ) 1 2 .

1

b t
x

b
u x t

c

e

αω
ω

α

− +
+

Γ +

 
 
 = −
 
 − 

                   (34) 

         
Fig.4. The graph of 1( , )u x t for 0.25,α =  1b c= = −  and 1ω = . 
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Fig.5. The graph of 2( , )u x t for 0.25,α =  1b c= = −  and 1ω = . 
 

Case2: 0 ,
b

a
c

=  1 2 ,
b

a
c

= −  22 .bλ ω= − +    (35) 
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Fig.6. The graph of 3( , )u x t for 1,α =  1b c= = −  and 1ω = . 

           
Fig.7. The graph of 4( , )u x t for 1,α =  1b c= = −  and 1ω = . 
 

Case3: 0 ,
b

a
c

= − 1 2 ,
b

a
c

=  22 .bλ ω= − − +    (38) 
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4. CONCLUSION 

In this work, we find the analytical solutions of the 
space-time fractional foam drainage equation and the 
fractional Klein-Gordon equation by using the 
modified Kudryashov method.  Also, we use 
Jumarie’s modified Riemann-Liouville derivation 
formulas and properties to reduce the fractional order 
differential equations into Riccati type equations. It 
can be seen clearly that the method is suitable for 
solving Riccati equations since it is also based on the 
homogenous balance principle. The obtained solutions 
are rational function solutions whose structures are in 
the traveling wave form.  
This method is effective, useful and easily computable 
with the help of computer algebra system 
Mathematica. Therefore, it can be applied to other 
nonlinear fractional differential equations. According 
to the balancing degree of the equations, hyperbolic 
function solutions can also be obtained. 
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