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Abstract- In this work, we handle the space-time fractiof@dm drainage equation and the space-time
fractional Klein Gordon equation to solve analylicarirstly, we use fractional traveling wave tsformations

to convert fractional nonlinear partial differemtéjuations to nonlinear ordinary differential etipias. Next,
the modified Kudryashov method is applied to fimda solutions of these equations.

Index Terms- - the space-time fractional foam drainage equatipaces-time fractional Klein Gordon equation;
the modified Kudryashov method .

1. INTRODUCTION 2. PRELIMINARIESAND THE MODIFIED
Fractional order differential equations, are the KUDRYASHOV METHOD

generalized type of the classical differential dopuns

of integer order, plays an outstanding role frora t )

viewpoint of applications in chemistry, physics andlefined as [7,8]:

engineering. In the past centuries, the fractional 1 d* -

derivatives and integrals were thought to be the @&I(X‘U) [f()-fO)]d7. a<0,

subject of the theoretical mathematics. However, in f

the few decades, many studies have implied that thf(=]__1 EJ(X_U)-a[f(”)_f(O)]dm O<a<l’

fractional phenomena is related with not only theep rd-a)adxy

mathematics, but also the applied sciences such as (f"())"™", n<a<n+l, n=1

fluid mechanics, arterial mechanics, optical fibers

geochemistry, plasma physics and so on. Due to the

neglect of the effects in classical integer ordedets, 1)

the advantage of the fractional derivatives becomghere

apparent in modelling mechanical and electrical -

properties of real materials. The fractional defiies Dy f(x):=limh (D f[x+(@-K)H . 2)

construct a basis to describe the features of sgste - k=0 .

mathematical modelling and simulation of systemgq a.‘?'d'“on_' some  properties _for.the proposed_

that leads to nonlinear fractional differential atjons modified Rlemf’:mn-LlouwIIe derivative are given in

(FDEs) and to solve such equations [Podlubn/ 8l as follows:

hJumarie‘s modified Riemann- Liouville derivative is

(1999)]. In recent years, numerous effective meshodpat :Mty-a, y>0, (3)
for solving these system have been found in thet mos rd+y-a)
useful works on nonlinear FDEs. Such as, the Suhjt"(f(t)g(t)): g(t)Df f (t) + f (t)D7 g(t), (4)

equation method [2,5,6,14], the exp-function method_, e o  ~a a

[16], the first integral method [11,15], the comple ~t flo(0] = fL AT D Y =Dy T dIC (N 5 ()
transform method [12] and so on. The common of

these methods is based on the homogenous balamdgch are the direct consequence of

principle. In this study, firstly we will describthe  Dx(t) = (1+a)Dx(t). (6)
modified Kudryashov method which is proposed by present the main steps of the modified

N. A. Kudryashov [10] and applied in many studies tKudryashov method as follows [1,3,4,9,10]:
construct the exact analytical solutions of nordine g5, 3 given nonlinear FDEs for a functian of
differential equations. This method is also basaed Andependent variableX = (X, , Z ..., 1):

the homogenous balance principle. Therefore, it can

be applied to solve the fractional order nonlinear O N N T
equations. Then, we will apply the proposed methoc[i:(u’u“ux’uy’uz"“’Dt ub/ubjubiu,..F € (7)
to the space-time fractional foam drainage equation

and the fractional Klein-Gordon equation by thephel

of Jumarie's modified Riemann- Liouville derivative
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where Dfu, Dju, Dju and D;u are the modified This equation describes the evolution of the vattic
Riemann-Liouville derivatives af with respect to densitgl gr?file of akfoz_;\m under gra\f/ity. Their uses
t, x, y andz F is a polynomial iru = u(x,y, z,..., t) and extended from packaging, car manufacturing to ore-
. y . . P y . . ( 4 .) separation and brewing [Cort al. (2002)]. B
its various partial derivatives, in which the riaehr considering the traveling wave transformation:
terms and highest order derivatives are involved. '
:tqz?l): ;V;;n:()er?nugate the traveling wave solutions Ofu(x,t) =u@),

a- ' wx”? At

u(x y,z,...t)=u@), = - 14
ez yzuoh : "“tarp Tara) o
USR5 A L S— (8) where wand Aare constants. Then Eq.(13) can be

FA+B) F+y) F@A+9d) r+a) ' 4

g reduced to the following ordinary differential
where w,&,0 and A are arbitrary constants. Thenequation:

Eq.(7) reduces to a nonlinear ordinary differential

n=

eél(ﬂaﬂoz of the for)m 0 ©) —Au'+%w2uu "+ 2%u* wu? =0, (15)
Step 2: We suppose that the exact solutions of Eq.(%lso we take
can be obtained in the following form: u@)=a,+aQ+---+ aNQN (16)
M

u(7) :;@Q' ) (10)  whereQ :ﬁ . We note that the functio® is the
where Q __1 and the functio® is the solution of solution of Q, =Q?-Q. Balancing the the linear term

* of the highest order with the highest order nordine
equationQ, =Q*-Q. term in Eq.(15), we compute
Step 3: According to the method, we assume that the N =1. (17)
solution of Eq.(9) can be expressed in the form Thus, we have
u(7) =a,Q" +---. 11§  u@7) =a, +a,(7) (18)
Calculation of valueN in formula (11) that is the pole and taking the derivatives af(s7) with respect tor,
order for the general solution of Eq.(9). we obtain
In order to determine the value Nfwe balance the u, =aQ’-aQ, (29)
highest order nonlinear terms in Eq.(9) analogoasly =2aQ"-3Q*+aQ. (20)

in the classical Kudryashov method. Supposin
U (u®() and (P (7)) are the highest order %ubsntutmg Eq.(19) and Eq.(20) into Eq.(15) and

nonlinear terms of Eq.(9) and balancing the hlghesfo"ecmg the coefficient of each power Qf setting
order nonlinear terms we have: each of coefficient to zero, solving the resulting

s—r system of algebraic equations we obtain the foltmwi
N=>"TP (12) solutions:
r—I-
== =- A= i (21)
Step 4: Substituting Eqg.(10) into Eq.(9) and equatingaO 2’ &4="w 4°
the coeffcients ofQ to zero, we get a system ofinserting Eq.(15) into Eq.(21), we obtain the
algebraic equations. By solving this system, weiobt following solutions of Eq.(13)

the exact solutions of Eq.(9). 1 1

u(x,t) =@ S TTTw | (22)
3. APPLICATIONS 1+ @A) Twa)
3.1. The Space-Time Fractional Foam _ 1 1
Drainage Equation U, (x,1) = 2 P | (23)

. . 1_el'(1+ﬂ) I (+a)
We first apply the method to the space-time framtlo
foam drainage equation in the form:

°u_1 9%u  _ ,0%u [(d%uY

=—u +2u°— 13
o’ 2 ox¥ ox” (OX'” j 13
where 0<a,B<1, x>0 and u is the function of

(% 1).
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where wand A are constants. Then Eq.(24) can be
reduced to the following ordinary differential

equation:

A%u" = w’u"+bu+cu® (26)
Also we take

u() =a, +aQ+--+a,Q" (27)

where Q :ﬁ . We note that the functio® is the

solution of Q, =Q’ -Q.Balancing the the linear term

of the highest order with the highest order nordine
term in Eq.(26), we compute

N=1. (28)
Thus, we have

u(7) =2, +2,(7) (29)
and taking the derivatives af(;7) with respect to,
we obtain

u, = alQ2 - aiQ ) (30)
u,, =2aQ°-RQ*+aQ. (31)

Substituting Eq.(30) and Eq.(31) into Eq.(26) and
collecting the coefficient of each power f setting

each of coefficient to zero, solving the resulting
system of algebraic equations we obtain the folhgwi
solutions:

Casel: %:\E’ a=- \E A=—=/-2b+aF. (32)

_ bl 1
ul(x,t)—\E 1 Zm , (33)

WX+

1+ e I (1+a)

b
u,(xt)=,—-|1-2———|. 34
Fig.3. The graph ofi,(x,t) for =1, S=0.5 and w=1. 2( ) c (V*waz)t” (34)

3.2. TheFractional Klein-Gordon Equation

We, next consider the fractional Klein-Gordon
equation defines as:

0*7u _d% 3

e +bu+cu (24)
wheret >0, 0<a <1 andu is the function of(x, t).

This equation defines a motion of pseudoscalar field
whose quanta are spinless particles. This equatsm
describes the quantum amplitude for finding a point
particle in various places. By considering the@g g 4 The graph ofy,(xt)for @=0.25, b=c=-1 and w=1.
wave transformation:

_ _ At
u(x,t)=u(), n7=awx ) (25)

386



International Journal of Research in Advent Technology, Vol.2, No.3, March 2014
E-1SSN: 2321-9637

o] 1
u5(x,t)—\/g 1+ Z—waz)ta , (39)

o

1+e r(1+a)

US(X,t) = \/E -1+ Zﬁ . (40)

wxt————— 1 —

1-e r(1+a)

Cased: a, =—\E, a1=2\E, A=v-2b+a?. (41)

Fig.5. The graph o, (x,t) for a =0.25, b=c=-1 and w=1.

Case2: %:\E’ a=- \E A=+-2b+af. (35)

_|b 1
u, (x,t) = ° 1+ Zm , (42)
b 1 l+e @0
U3(X,t):\/; 1- Zm , (36)
l+e r+a) Uy (x,t) = 9 -1+ zﬁ ) (43)
c -2+ |t
l-g  TGra)
_|b 1
U4(X,t)—\/; 1 ZW . (37)
l1-e - r(1+a)

. 4. CONCLUSION

In this work, we find the analytical solutions dfet
space-time fractional foam drainage equation aed th
fractional Klein-Gordon equation by using the
modified Kudryashov method. Also, we use
Jumarie’s modified Riemann-Liouville derivation
formulas and properties to reduce the fractiondkeor
differential equations into Riccati type equatiofis.
can be seen clearly that the method is suitable for
solving Riccati equations since it is also basedhen
homogenous balance principle. The obtained solsition
are rational function solutions whose structuresiar
the traveling wave form.

This method is effective, useful and easily comblgta
with the help of computer algebra system
Mathematica. Therefore, it can be applied to other
nonlinear fractional differential equations. Accimgl

to the balancing degree of the equations, hyperboli
function solutions can also be obtained.
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